PHYSICAL REVIEW E VOLUME 55, NUMBER 3 MARCH 1997

Stochastic beam dynamics in quasi-isochronous storage rings
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We investigate effects of quantum fluctuation, potential well distortion, quantum lifetime, and Touschek
lifetime of the quasi-isochronoy®I) dynamical system. The Fokker-Planck equation is employed to study the
equilibrium bunch distribution. The quantum lifetime in the moderate damping regime is compared with
analytical formulae. The effects of harmonic radio-frequency phase modulation on equilibrium distribution
function, quantum lifetime reduction, and the occurrence of stochastic resonance are studied. The formula for
the Touschek lifetime for the QI dynamical system is derived and stufisdd63-651X97)04002-6

PACS numbg(s): 29.20.Dh, 03.20ki, 05.45+b

[. INTRODUCTION force. Including the harmonic rf noise and the synchrotron
radiation damping, the equation of motion for electrons in a
Very short electron bunches, e.g., submillimeter in buncHQ! storage ring is similar to a class of physical problems
length, can enhance applications such as time resolved egtch as the current biased Josephson jundffdnthe sto-
periments, next generation light sources, coherent synchrehastic resonands], etc.
tron radiations, and damping rings for the next linear collid- This paper studies effects of the quantum fluctuation, po-
ers[1]. A method to produce short bunches is to reduce théential well distortion, and Coulomb scattering leading to the
phase slip factor, or the momentum compaction faatofor =~ Touschek effect. Section Il studies effects of quantum fluc-
electron storage rings. Because of its potential benefit, thtuation on the equilibrium beam distribution and the quan-
physics of particle dynamics in low, lattices is important tum lifetime in the moderate damping regime. We also study
[2-4]. the effect of potential well distortion on the beam distribu-
In our earlier paperg2,3], we studied single particle dy- tion function. Section Ill studies effects of the harmonic rf
namics and the stability of the quasi-isochrond@) dy- phase modulation on beam distribution function, diffusion
namical system, where the particle motion satisfies the unirate enhancement, and the stochastic resonance. Section IV
versal Weierstrass equatigaee Appendix A The particle studies the Touschek lifetime limitation. The conclusion is
motion is described by the Weierstragsfunction or the given in Sec. V.
Jacobian elliptic functior{5,6]. We found that the QI dy-
namical system is not sensitive to the radio-frequer€y Il. QUANTUM FLUCTUATION
voltage modulation provided that the modulation amplitude AND THE LANGEVIN EQUATION
is less than 20%. On the other hand, we showed that the QI ) ) )
dynamical system exhibited chaos at a relatively weak rf The synchrotron equation of motion for an electron in a
phase modulation. Due to the synchrotron radiation dampindR! Storage ring, in the presence of quantum fluctuation and
stable fixed point¢SFP$ of parametric resonances become Narmonic rf phase modulation, is given tsee Appendix A
attractors. As the amplitude of the applied phase modulation 2
increases, the system exhibits a sequence of period-two bi- d_x+Ad_x+ d_U:_w Bcog w, t+ x)+DE). (1)
furcations enroute towards global chaos for a modulation dt? dt = dx m m- X '
tunew,, € (0,2). The sequence of period-two bifurcations has
been attributed to parametric resonances of the Hamiltoniahl€ret=vs0 is the time variableyp; is the small amplitude
system. The critical phase modulation amplitude vs thesynchrotron tuneg is the particle orbiting angleA is the
modulation tung(see Fig. 6 in Ref[3]) shows a cusp near Phase space damping parametey, andB are the rf phase
the transition modulation tune between the 2:1 and the 1:modulation tune and amplitude, respectively, dde ;x>
parametric resonances. —1x3 is the QI potential. The conjugate phase space coordi-
Electrons in a storage ring emit synchrotron radiationshates ,—Ap/p,) for the synchrotron motion is trans-
The synchrotron light frequency spectrum is continuous ugormed to the normalized coordinates by
to a critical energy given byiw.=3%cy/2p, where# is
Planck’s constanty is the relativistic Lorentz factor of elec- X 71 Ap _ Vst

trons,c is the speed of light, anal is the bending radius. The 7 P’ PO hng "~

synchrotron radiation is a quantum mechanical process.

Since an electron normally emits hundreds to thousands dfhe quantum fluctuation is represented by a Langevin force
photons per revolution and the average energy of each emib £(t). Since the time for each quantum emission of photon

ted photon is small, the quantum effect of photon emissions much shorter than the relaxation time and successive emis-
can be simulated by a white noise. Thus electrons, in theions of photons are independent, the Langevin force can be
presence of quantum fluctuation, are acted on a Langeviapproximated by a white-noise sigrlt) with
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(€(1)=0, (&)&t"))=o(t—t"). 2 T
. A=0.5
Here (- --) represents an ensemble average. The Gaussian 20 L 1:1 resonance i
random variable with a zero mean and-dunction correla- )
tion is usually called white noise because its spectral distri-
bution is independent of frequency. Methods of integrating
the stochastic differential equation are listed in Appendix B.
In the absence of damping and harmonic rf phase modu- 1.0 | = 1

lation, the unperturbed Hamiltonian is given by

2

1 1
Ho=%+ sx°— x5, )

2 2 3 00 . ; ,

where the separatrix energy of the Hamiltoniartig= 1/6. A=02
2.0 | 1:1 resonance
A. Damping decrement and the damping time
The energy loss per revolution for a particle having an
energy offset of with respect to the synchronous patrticle is o )
given by 1.0 4
U(e)~Uqy+eU’. 4

Here U, is the average energy loss per revolution for the N
synchronous particle and’ is the slope of the energy loss 0.000 1'0 2‘0 : 3'0 0
with respect to particle energy. Normally, the energy varia- ) ' 0)' ) )
tion U’ is small, i.e., m

, UoJe FIG. 1. The critical phase modulation amplituBg, (thin solid

=N <1, (5 lines) obtained from numerical simulations is shown as function of

o, for A=0.2 (bottom plo} and A=0.5 (top ploj. Circle dots are

whereE, is the energy of the synchronous particle, dads B, 1.1 andB,.; for the 1:1 and 2:1 parametric resonances. Note that

the damping partition number. the cusp inB., obtained from numerical simulations is due to the
The average energy loss of the synchronous particle calkansition from the 2:1 to the 1:1 parametric resonances. Including

be compensated by the energy gain in rf cavities. Thus th@e quantum diffusion, the critical phase modulation amplitude

change of the particle energy offset in a complete revolutiorper 'S reduced, whereB., for D=0.03 (open circley and
is givgen by P 9y P =0.05 (solid triangle$ are obtained by numerically integrating

the stochastic differential equation.
€'=e—U'e-W, (6) B. Stability limit of stochastic dynamical system

Without quantum fluctuation, the stability limit of the QI
Idynamical system is determined mainly by the 1:1 and 2:1
parametric resonances, which correspond to the dipole and
guadrupole modes respectivésee Fig. 6 in3]). Including
d U’ white noise, we expect that resonance islands will be
d—0<6>=—2—(6>=—)\<e). (77  smeared and the global chaos will be enhanced. Figure 1

m shows the critical modulation paramety, as a function of
the modulation frequencyw,, for A=0.2 (bottom and
A=0.5 (top) respectively. Note that the white noise with

UoJe D =0.03(open circlesand D =0.05 (solid triangle$ has ef-
=5 (8) fectively smoothed the cusp near,~2 resulting from the

0 1:1 and 2:1 parametric resonandselid circles. Further-
more, the quantum fluctuation can effectively reduce the
arametric space where the period-two bifurcation occurs. In
fher words, quantum fluctuation enhances the onset of glo-
bal chaos.

where W depicts the Wiener process of E(B2) due to
guantum fluctuation in the photon emission. Averaging ove
many revolutions, we have

Here the damping decrement given by

is of the order of 10°—10"2 in electron storage rings. In
the normalized coordinate, the enhanced damping parametg
for QI storage rings becomes

A=—. 9 C. Fokker-Planck equation

The Kramer-Smoluchowski-Fokker-PlanckKSFP or
The damping parametér for QI storage rings is of the order simply the Fokker-Planck equation for distribution function
of 0.1-0.5. In the normalized time coordinate, the dampingV' associated with the Langevin equation of EL).is given
time is given byty=1/A. by [9,10]
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In case of zero harmonic modulation wigh=0, the normal- ‘g - ;
ized steady-state distribution function for the Langevin equa- =
tion is given by g w0 E =
1 1 :
V(E)= —e Ho/Bth=——g F/En (11) |
Etn Etn 0 B
109 - E
where theenergy Eis a Hamiltonian value, and the “ther- e .

mal” energy E;, is given by the Einstein relation, or the E
fluctuation-dissipation theorem

D2 FIG. 2. The solid line shows the equilibrium distribution func-
En=o—. (12 tion W(E) obtained from the numerical simulation using random
2A walk algorithm discussed in Appendix B. Our results verify the

. . . . . ... .. validity of the analytic solution of Eq.11). The dashed shows the
It is worth noting that the isodensity contour of distribution initial distribution function used in our numerical simulation. Other

function follows the equienergy line of the unperturbedgiochastic integration methods yield similar results.
Hamiltonian.

The normalization of Eq(11) is correct only in a small
bunch limit whereEy, is small. If a beam bunch contailé
particles, the distribution function becomes

AE=1/1200 each. Statistically, there would be 50 particles
per bin with a statistical fluctuation of50=7.07 particles.
With our chosen damping paramet&r=0.1, particles fall

dN N into their steady-state distribution very fast, equilibrium dis-

dE- E—efE’E‘h. (13)  tribution functions can be recorded every 2000 turns. At the

th end of a tracking run, 500 distributions are averaged to re-

Using Eq.(3) for the unperturbed Hamiltonian, the distribu- duce the average statistical fluctuation to 0.32 particle in

tion function is Gaussian in the small bunch approximation€ach energy bin. After every turn, we also record number of

where Ey, is small. Since the rms momentum spread for aParticles lost and increased the weight of surviving particles

small electron bunch is given by accordingly when they were assigned to various energy bins.
In this way, distribution functions of every 2000 turns can be
op 2 ¥? averaged with equal weight.
E - q@ (14) The semilogarithmic plot of particle populations vs the

n
o

(19

energy bin shown in Fig. 2 indicates that the distribution is
for an isomagnetic storage ring, wheseis the bending ra- exponential, represented by E4.3). The rms energ¥y, of
dius, C,=3.84x 10" ¥ m, andJg is the damping partition the bunch can be obtained from the slope or the intercept of
number, the diffusion parameter is given by the distribution function at the zero energy bin. From the
slope of the straight line in Fig. 2, we determine
[2AC, E,=0.0164, which agree very well with the expected value
b= Jep of E;=D?/(2A)=0.0160. The value oEy, obtained from
numerical simulations is shown as circles in Fig. 3. The theo-
Here the quantum fluctuation coefficiebt of the QI dy- retical value of Eq(12) is shown as the dotted line.
namical system is also enhanced by the smallnessghf In It is worth pointing out that the synchrotron tune does not
fact, if the ratio| 7,/ | were not properly compensated, the affect the steady-state distribution. However, it must be cho-
thermal energy paramet&?/2A would also be enhanced. sen to be small enough so that there are a sufficiently large
To verify the distribution function of Eq(13), stochastic number of random excitations during one synchrotron pe-
integration methods are applied to solve the Langevin equadod. In our tracking example with 2v,=0.05, there are
tion. Some algorithms used in particle beam simulations fombout about 125.7 steps of random walk in one synchrotron
stochastic differential equation are listed in Appendix B. All period. Further reduction in2v, does not lead to any dif-
numerical algorithms give similar results with an equilibrium ference in tracking results.
distribution given by Eq(11). For example, Fig. 2 shows a Figure 4 shows the equilibrium distribution function ob-
final equilibrium distribution function obtained from numeri- tained from numerical simulations of 5000 particles with
cal tracking with the random walk algorithm performed ac-A=0.2 andD=0.113 137 08. The solid line marks the sepa-
cording to Eq.(B2) with parameters Zvs=0.05, A=0.1, ratrix of the unperturbed Hamiltonian. The dotted line marks
and D=0.056 568 54. We track 10 000 particles, randomlya torus of the unperturbed Hamiltonian with an energy
distributed initially in a rectangle withp|<1/(2/3) and E=2E,,. We note particularly that the phase space distor-
—1/4<x<1/2, for 1xX 1 turns. The “energy” within the tion shown in Fig. 3 of Ref[2] is effectively compensated
QI bucket is divided into 200 bins with a bin size of by the stochastic process. There are slightly more particles
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FIG. 3. The rms energy of the equilibrium distribution function - . L
E, obtained from numerical integration of stochastic integral equa- FIG. 5. The number of surviving particles Vs time in number of
tion is compared with the theoretical value Bf/2A (dotted ling t_urn_s. The slope of the exponential decay rate s called the quantum
derived from the Fokker-Planck equation. The rms phase spacI etime.
area, divided by, is shown for comparison.
var(x) ={(x—(x))?),
outside the separatrix with>0. This is due to the fact that 5
particle loss will follow closely the Hamiltonian trajectory. var(p)={(p—{pP))°),
The equilibrium distribution functions are identical for all B
dynamical systems with identical thermal enejy. How- covarx,p) =(xp)—(x)(p).

ever, we will show that the quantum lifetime depends also 0q—|ere(~ --) denotes an average over the beam distribution. In
the damping parametek. . ... . asmall bunch approximation, the rms phase space area is

. The rms phase space argaof the beam distribution is equal tomE,,. Rectangle symbols in Fig. 3 show the rms
given by phase space area obtained from numerical simulations. The
agreement ofd/ 7 with Ey, indicates that the distribution is
nearly Gaussian in a small bunch approximation.

A
—= Vvar(x)var(p) —[covarx,p)]?, (16)

D. Quantum lifetime

where The steady-state distribution, such as B@), arises from

an equilibrium process between synchrotron radiation damp-
S ing and quantum excitation. This means that at any contour
- A: 0.200 D: 0.11313708 of energyE, the particle flux leaving the contour as a result
o of quantum excitation is balanced by a flux entering the con-
tour due to damping.

In reality, particles inside the bucket can escape the po-
tential barrier due to the Langevin force. In a quasisteady
state, the form of distribution function in phase space does
not depend on the number of particles, which decreases with
time. Thus the flux that leaves the dynamical aperture is
given by

0.5—

0.0 —

08— AN N NGO .

dt E, q

By BT e e s
X where 7, is the quantum lifetimeandE; is the dynamical
aperture. In a small damping limig, is approximately equal

FIG. 4. The equilibrium distribution function in thec(p) phase (O the separatrix enerdys, of the unperturbed Hamiltonian.
space obtained from the numerical simulation of 5000 particles wittf igureé 5 shows the number of surviving particles, obtained
A=0.2 andD=0.113 137 08. The plot is used to demonstrate ffom a numerical simulation, as a function of the turn num-
that the distribution function follows the contour of taeperturbed ~ Per. We find that the particle number decays exponentially
Hamiltonian The separatrix is shown as the solid line. The dottedwith time. Although the quantum lifetime in storage rings is
line shows the Hamiltonian contour with an energy that is equal tadsually much longer than the lifetime limitation arising from
two times of the separatrix energy. The phase space distortion dygrocesses such as the beam gas scattering, the intrabeam
to the damping is compensated by the quantum diffusion. scattering, the Touschek lifetime, etc., the general properties
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of the quantum lifetime for the QI dynamical system with a
moderate damping, i.eA=0.01, is not well known in accel-
erator physics. Furthermore, this particular dynamical system
is also important to other branches of phydit4].

T T T IR
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Ey,=0.03872
80000 I

1. Quantum lifetime in the small damping limit

(turns)

In the small damping limit, the Hamiltonian contour is not 10000 |-

A S B

greatly distorted. When a particle crosses the separatrix, it is,, Kramers
likely to escape the potential barrier. The quantum lifetime £

can be obtained by using the condition of flux conservation.E 20000 | e o

The flux that enters the contolg=E, at any timet is e i
given by
!
dN(t) | dN(E,t)| dE 19 06 08
dt E, dE E, dt El’

L . FIG. 6. The quantum lifetime in number of revolutions obtained
wheredN/dE is given by Eq.(13), and the damping rate from numerical simulations is plotted vs the damping paraméter

dE/dt can be obtained from integrating Ed) with for a fixed Ey,=0.038 72. The solid line shows the theoretical esti-
mate of a weak damping limit, the dotted line shows the theoretical
d_E _ d_X 2 ~—AE 19 estimate of Kramers’s formula, and the dashed line shows the theo-
dt|. dt) | L (19 retical value of the BHL formula.
1

Here the equipartition theorem is used to obtain the last apv_vhere Dp 1S the natural frequency of the potential at the

proximate identity(see Appendix € Substituting Eqs(19) ~ SFP, andw _is the imaginary frequency at the UFP. The
and(13) into Eq. (18), the quantum lifetime of the bunch is dotted line shown in Fig. 6 shows the Kramers’s moderate

given by damping lifetime, which depends slowly &
. :ieEllEth’ 20 N | 3. BHL formula .
9 AE; Buttiker, Harris, and Landaue(BHL) [11] studied the
extremely underdamped Josephson-junction circuit and
or found a lifetime formula for thermal excitation given by
_ En g - _ [(1+4E/ATE)Y*+1]? 27 £ /e (93
Tq—me urns, ( ) Tq’BHL_ 2 w—e . ( )

SFP

which is inversely proportional to the damping parameterHeref=7.2 is the factor relating the separatrix energy to the
A. This formula is commonly used in estimating the quantumseparatrix action for the QI dynamical system. The BHL for-
lifetime for nominal non-QI electron storage rings, where themula reduces to Eq21) in the small damping limit with a
parameteA is small. linear oscillator approximation wheré=2s. The dashed

Figure 6 shows the quantum lifetime obtained from nu-line marked BHL in Fig. 6 provides a fair agreement with
merical simulations vs damping paramefeffor a constant that obtained from numerical simulations.

E#=0.038 72. The solid line in Fig. 6 shows the quantum
lifetime calculated from Eq(21) with E;=Eg,. This result
agrees reasonably well with that obtained from numerical
simulations only at a small damping limit with<0.01. The Particle motion in a storage ring is also affected by the
quantum lifetime is considerably larger than the prediction ofvake field generated by the circulating beam. The energy
Eq. (21) at a medium damping with=0.01. This can be equation is given by

understood by the fact that the effective bucket area for a ds eV N

moderate damping system is larger than that of a weak =~ _ €Vocosps __©
damping system. do  2wpB°E 2mp*

E. Potential well distortion

EJ;OdT’p(T')W(T— 7).

(24)
2. Lifetime for moderate damping systems

. Here 7 is the real time coordinate related to the particle rf
Kramers[12] and Chandrasekh#il3] derived a formula phase coordinate by

for the particle escaping lifetime in moderate damping re-
gime given by &
T=——, (25
2 hwo
E,/E
——eF1/Fth (22)
“sep p(7) is the density of the beam bunch with the normalization

l/2+ A
2w

UFP,

A2

4w?
UFP,

1+

T =
quC
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f p(r)dr=1,
-0.30 -03
N is the number of particles in a bunch, and the wake func- ~ oo | ” oal
tion W(7) is related to the impedandg(w) by
1 (o 5% 10 020 0.30 0.40 %00 106.9 A ‘206.0 300.0
W( 7_) — E] e""TZ”(w)dw. (26) u distribution
« 300.0 . . 1.0 : : :
Using normalized coordinatesp (see Appendix Aand the < 2000 - | 08+
time coordinatd = v¢#, Eq. (24) becomes E > ool
2 1000 |
dx e®N 2 d
dt —P~ 27Tﬁ E nov f pp(p)W Vs[p_ P1}, % 02 03 0.4 1% o5 00 05 10 15
(27) u u
where FIG. 7. The top-left plot shows the equilibrium distribution
function at a Poincaresurface of section with parameters
e 7’ 72 ~) A=0.2, B=0.4, w,=2.1, andD=0.009. The projection of the
p(p)= p p equilibrium distribution function onto the andv axes are shown,
WoVls™M1 \ Wols?1

respectively, in the bottom-left and top-right plots. The bottom-right

is the normalized distribution function witfip(y)dy=1. plot shows the relative position of the beam bunch in the QI bucket.

The corresponding effective Hamiltonian for orbiting par-

ticles becomes Ill. EFFECTS OF THE HARMONIC RF PHASE

MODULATION
2 2 3 2
H :p_+x__x__i 7 Neglecting quantum fluctuation, the attractor solution
"2 2 3 2wB%E novs arising from the rf harmonic phase modulation for the 1:1

parametric resonance can be obtained by the harmonic lin-
[p p]) (28) earization method wit2,3]

J i d pp(p)W<

When both white noise and phase space damping are in-

cluded, the equilibrium distribution function becomes where Xo, Xy, and a are determined by the solutions of
following equations:

wiB?= A2wi X5+ (wh—1-2X5)?X3,

1
=5(1-\1-2x)),

X=Xg+ X0 wpt+ a), (31

P (x,p)=Ne Hei/En (29

where N is the normalization factor determined by

J WV (x,p)dxdp=1

- —Awny
Letting p(p) =SV (x,p)dx, we obtain the Haissinski equa- taw= ——F——.
tion [14] wm—V1-2X]
1 [p? e2N s Figure 8 of Ref.[2] shows characteristic properties Xf,
p(p)=Cexp — —| =5 — 5—5= which corresponds to the SFP of the 1:1 parametric reso-
Ewnl 2 2w B°E NoVs nance.
When the effects of quantum fluctuations are included, we
X f dp Ldpp(p)W( [P p]) H expand the phase space coordinate around the attractor solu-
tion with

(30 X=Xg+ X108 @yt + @)+ U. (32)
whereC is a self-consistent normalization constant. A self-
consistent solution to the Haissinski equation can provide an
equilibrium distribution function to the dynamical system. n+Au,+[m_ 2X,Cog wt+a)Ju—u2=DE(t).

For simple wake field model with a resistive broadband or (33)
an inductive broadband impedance, the distribution function
can be derived from analytic formulg&5]. Recent numeri- The equivalent local Hamiltonian around the SFP is given by
cal calculations for the potential well distortion for the QI 1 1 1
storage ring$16] shows that when the bunch area is small, s v 2 3
i.e., smallE,,, the effect of potential well distortion is simi- Hig=5u "t 5 lVI=2Xi = 2Xscogont + a) JuT= Zu%,
lar to that of the normal rf system. (34)

The equation of motion for the coordinatebecomes
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0.040 ‘ . . stable. It is worth pointing out that the equilibrium rms beam
o width, even in the presence of harmonic rf phase modulation,
oo T is essentially determined by the paramefgy( of Eq. (12
0030 | sG A" o | alone.
. & e To solve time dependent Fokker-Planck equation of Eqg.
IS ° (35), we express the solution as=V¥ g to obtain
b;, 0.020 | AAAO & i
s M9 _ | g+p? = T8 oy t+
A/,'(;I/ & ot =Lo0 \1,0 v | v [ lcogwm a)u]
0.010 | o i
X|=——g+—
(‘PO Jv g Jv
0.000 L~ . : :
0.000 0.010 0.029[2 0.030 0.040 J 9 ) D 2 2
peh) ~|—v—+—(Av+1-2X3-u)+ — —
TR AN
FIG. 8. The rms widthsr, and o, of the projected distribution a9 2Xyuv
function for B=0.4 and w,,=2.1 are plotted as a function of —2Av —+ cowpt+ a)|g. (38
D/+2A. Note here that the geometric means of the rms widths is dv Ein

nearly equal taD/\/2A, i.e., the equilibrium distribution function
follows the potential energy contour of the resonance island with & he top left plot of Fig. 7 shows the steady state distribution
thermal energy parameter given By,. function at a Poincareurface of section obtained from a
] numerical simulation with parameter&=0.2, B=0.4,
where the potential well around the SFP of the 1:1 paramet;, —2 1 andD=0.009. If the attractor amplitude is small,
ric resonance is essentially similar to the original Hamil-the equilibrium distribution function follows the potential en-
tonian with a spring constant that depends on the amplitudgrgy contour of the 1:1 parametric resonance island. The
X; and timet. The time dependent harmonic modulation in projected distribution functions ontoandv axes are plotted
the spring constant becomes the source of the Mathieu instap, “the top-right and bottom-left plots, respectively. The
bility [17-19. This provides the mechanism for the first potom-right plot shows the relative position of the Poiricare
period-two bifurcation leading to global chaos in the QI dy- gyrface of section in the QI bucket.
namical system. The rms widthso, and o, of the projected distribution
functions obtained from numerical simulations are shown as
A. Equilibrium distribution function a function of D/y/2A in Fig. 8. Because the equilibrium

The Fokker-Planck equation associated with the Langevif?unch profile may follow the local potential well of the at-

equation (33) for distribution function ¥ (u,v,t), where tractor, the actual rms widths, ando, depend on the time
v=u’, is given by for the Poincaresurface of section. In all cases, we find that

the rms widths are nearly equal B \2A predicted by the
solution[Eq. (37)] of Fokker-Planck equation.

It should be pointed out that the attractor solution
X=Xg+ X Coslwyt+ ) is valid only for the attractor solution
Herel, is the time independent differential operator givenassociated with the 1:1 parametric resonance. In the case of

v

J
W: Lo— 5[2X1005(wmt+a)u] . (35

by period-2 bifurcation, the attractor solution is given by
J J D? §?
= —pt+— J1—2X2u—u? —-—— 1
Lo auv+au (Avty1=2Xu-u9+ 2 dve’ x=X0+chos{wmt+a)+xl,zcos(§wmt+,8 , (39

The solution of time independent Fokker-Planck equation

and consequently the equilibrium distribution function
70w (36) ¥ (u,v,t) is modified accordingly. Particles are distributed
oo around around the SFPs of the 2:1 parametric resonance.
o Because the potential well of the 2:1 parametric resonance is
is given by shallow, it can easily be destroyed by the quantum diffusion.

.= 1 1
O_E_thex E_th

Note here that the potential well around the SFP of the 1:1 When a harmonic modulation is applied, particles are dis-
parametric resonance for the QI Hamiltonian is lowered bytributed around SFPs, which coherently rotate about the cen-
the attractor solution amplitud®,. When the attractor am- ter of the bucket at the modulation tune. The equivalent local
plitude reachesX,;=1/\/2, the potential well disappears potential for particle motion around the SFP is given| bge
[2,3], and the QI dynamical system becomes globally un-Eg. (34)]

—+ —u?—=u3|]. 37 B. Enhancement of quantum diffusion rate
2 2 3 . )
due to rf harmonic modulation
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5.0 . ‘ mainly when the potential energy difference between the
SFP and the UFP is small, where parametric resonances can
greatly enhance the particle loss rate. In this case, using the
time averaged separatrix energyw, of Eq. (42) for the
separatrix energ¥; in Eq. (23) does not provide a good
approximation to the lifetime. A phenomena calktdchas-

tic resonancewill be discussed as follows.

oy
=3

g
o

D=0.15, A=0.2 1

decay rate enhancement
w
(=]

C. Stochastic resonances

10| : ‘ A When a low frequency harmonic modulation and a white
0.00 0.10 x % 0.30 noise are simultaneously applied to this dynamical system,
' the transition or the decay rate exhibits time dependent peri-
) odic enhancement. The period of transition rate enhancement
FIG. 9. The triangles and dots show the escape rate enhancgs equal to the period of the harmonic modulation. This pe-
ment as a function of the attractor amplitudg for A=0.2,  iqqic enhancement phenomenon is usually called sioe
D=0.1, ar.'dDzo'lS' The solid lines are c.’bta'ned from the BHL chastic resonanceOccasionally, this type of enhancement
formula with E, replaced by the separalrix energy/sc, of Eq. may occur in a stochastic dynamical system with an algo-
(42). The parameteB is varied to obtain appropriaté, for a given rithm of white noise that is not sufficiently random. In this
modulation tuneup,=4. section, we will show that the stochastic resonance arises
1 1 from_ the parametric resonance of the low frequency har-
V(u)==[ m_ 2X,C08 wyt+ @) Ju2— = ud. monic modulation. . _
2 3 We have shown that a low frequency modulation with a
(40 small amplitude modulation induces mainly the 1:1 paramet-
ric resonance. Particles incoherently damp to SFPs of the 1:1
Fnarametric resonance. These SFPs rotate about the center of
[

If the modulation tune is high, e.gw,,>2, and if the
escape time is much longer than the modulation period, th

) . . . .The bucket at the modulation frequency. Below the bifurca-
escaping particle experiences many cycles of the rapid oscil- . .
) . : . . tion frequency, there are supposedly two islands associated
lating potential, which can be averaged to obtain an effective

) with the 1:1 parametric resonance. However, the outer island
potential[20] is destroyed by overlapping resonances near the separatrix
Including a Langevin force with white noise, particles are
2_ 8 distributed around the SFP with an rms beam width given by
the thermal energ¥y,. Since the beam bunch coherently
(41 rotates around the center of the bucket, we expect that the
. . . article escape rate (4{) will be greatly enhanced when the
The effectlve_pot_entlal energy difference between the UFFEFP is near the UFP. The effective potential energy differ-
and the SFP is given by ence between the time dependent SFP and UFP is given by

1 2x3
Vei(U) = —( V1-2X2+ ————|u
2 w2 —\1-2X2

2

1 2X2
AVeer=| VI—2X34+ —— 2
sep 6( i —1-2X2

In the presence of the high frequency modulation, the quan- . _

tum lifetime is given by Eq(20) or (23) with the separatrix The upper plot of Fig. 10 shows the particle escape rate
energy E, replaced by the potential energy difference obtained from a numerical simulation as a function of time
AV, Here, the quantum lifetime reduces to Eg0) for ~ Wwith parameters 2v,=0.04,A=0.1,B=0.5, v,=0.2, and

. (42 sz‘;{u)z%[\/1—2X§—2X1005(wmt+a)]. (44)

X;—0. D=0.075. Note here that there are major peaks separated by
Figure 9 shows the enhancement of the particle decapN=1/(vy,vs) turns. The solid line in the top plot shows the
rate, defined as time dependent decay rate of the BHL formula wih re-
placed byAV e, 0f Eq. (44). The lower plot of Fig. 10 shows
q the phase
r=—, (43
Tq,m

as a function of the amplitude of the SB® for the modu- )= (P

lation tune w,=4 and A=0.2 with D=0.1 (circles and (@) =arcta w

D=0.15 (triangles, respectively. The attractor amplitude

X, is obtained by varying the paramet&r Solid lines shown

in Fig. 9 are theoretical results of E@3) based on the BHL of the centroid of the beam bunch as a function of time. It is

lifetime formula of Eq.(23) with the effective separatrix en- clear that when the centroid of the beam bunch is near the

ergy E, replaced byAV4 of Eq. (42). UFP, particle loss is greatly enhanced. The occurrence of the
At a low modulation frequency, the coherent beam mo-periodic beam loss can therefore be associated with the en-

tion is slow in the QI bucket. Thus particle loss occurshancement due to the 1:1 parametric resonance.
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Turns FIG. 11. The schematic geometry of Touschek scattering, which
s transfers horizontal momentum into the longitudinal momentum in
FIG. 10. The upper plot shows the particle escape rate,(1/ the center of mass frame of collision particles. We XS andz as
plotted as a function of the turn numbers for parametershree orthonormal curvilinear coordinate system. Particle loss re-
2mv¢=0.04, A=0.1, B=0.5, w,,=0.2, andD=0.075. The solid Sulting from the large angle Coulomb scattering gives rise to the
line shows the escape rate with the BHL formula by substitutingTouschek lifetime, which becomes a limiting factor for high bright-
E, with the separatrix energy of E¢4). The lower plot shows the N€SS electron storage rings.
phase of the centroid of the beam bunch. Here we note that the
periodic enhancement, called stochastic resonance, of the escape Ap 7o
rate is well correlated with the condition that the centroid of the —=|—=. (47)
beam bunch is near the UFP of the QI bucket. Po

This section examines the scaling property of the Touschek
IV. TOUSCHEK LIFETIME effect in the QI dynamical system.
In the beam moving framéBMF), the deviation of the We consider the Coulomb scattering of two particles in
momentumAp, of a particle from that of the synchronous tNeir center of mass systeniCMS) with momentum

particle, which has zero momentum, is related to the momenPz,init= (Px.0,0) andﬁz,initf (—Px0,0). Here the components
tum deviation in the laboratory framep by

of momentum vectors i,S, andz base vectors are speci-
fied. Since the transverse radial momentum component of the
orbiting particle is much larger than the transverse vertical
and the longitudinal components, we assume that the initial
particle momenta of scattering particles are only in the hori-
Thus the momentum deviation in the rest frame of the beargontal direction. curvilinear coordinate system. After the col-
is reduced by the relativistic factgr. Due to the synchrotron lision, each particle is scattered by an anglerhe differen-
radiation damping and the quantum fluctuation, the rms motial cross section is given by the Mer formula

mentum spread of the beam in the BMF satisfies the follow-

1
Apc=;Ap. (45)

2
ing characteristic property d_”: 4ro 4 _ 3 (48)
dQ  (vic)*|sinfe sirfe|’
A 2\ 1/2
<(x[’3)2>1’2><(zl’3)2)1’2~< (%) > : (46)  wherer is the classical electron radius, and-2p,/m is
0

the relative velocity in the CMS. As shown in Fig. 11, let
x be the angle between the momentﬁmscaﬁof a scattered
particle and thes axis, ¢ be the angle between tlxeaxis and

the projection of the momentum of the scattered particle onto

where x5, and z; are betatron coordinateg,,=dxg/ds,
z';=dzﬁlds are the slopes of the horizontal and the vertical
betatron oscil!ationg, anfo is the momentum of the syn- the x-z plane. Using the geometry shown in Fig. 11, the
chronous particle. Smcg the transverse horizontal momentum, - o nvum of a scattered particle is given by

spread of the beam is much larger than the momentum

r f th m in the longitudinal plane, lar ngl = _ ; PR

é%jli?ng sca?tet;ienz can trais?ergthlédrazia? r?]o?neﬁtgr?"n ?o ?h?a P1.sca= (P4SIMYCOSP, PCOSY P, SiMKsing),  (49)
longitudinal plane and causes beam loss. This process wasd the momentum of the other scattered particle is

first pointed out by Touschekt al. in the Frascatie*e™ _7 The scatterina analé is related to ther ande b
storage ringAdA) [21]. The Touschek effect has been found P1.scatt gand % ande Dy

to be important to many low emittance synchrotron radiation cosi= sinycosp, (50)
facilities. It may be more important in QI storage rings,

where the momentum aperture is determined by the momerand the momentum transfer to the longitudinal plane in the
tum compaction factor, i.e., CMS is given by
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Ap.=py/cosy|. (51) E

. T

Now we assume that the scattered particles will be lost if the 0 Touschek Lifetime = 10 h E

scattered longitudinal momentum is larger than the momen-

tum aperture, i.e., N 1010 3

Ap 109 -

|COS)(|>—p= Pol 70| . (52 : E

YPx 7' 771| Px s [

10 e _E

Thus the total cross section leading to particle loss in the i 3

CMS is given by 107 =

108 L —;

o= do B | L]

T |cosy|= AP ypy 0.001 0.005 0.01 0.05

[m0/74l
4I’S farccosAAp/ypx) i d J‘Zfrd 4

~wic)), Sinydx o ¢ (1—sirxcoge)? FIG. 12. The expected number of particles per bunch in the QI

storage ring limited by the Touschek lifetime of 10 h for electron
beam energy of 2 GeV and 7 GeV, respectively. The assumed pa-
rameters are. =10 h,os=1 ps, and unnormalized rms emittances
ex=1 nm, e,=0.01 nm, with typical betatron amplitude functions

3
~ (1—sirycoge)

5 ) ~ of 10 m.
_ 8 7Py - +|nAp (53) : , : _
(vic)? (Ap)2 Yoy | The integral can be integrated easily to obtain
. 1dN 1 Nrac 7|3

The number of particle loss due to the Touschek scatter- - _2—0 n D(&) (58)

ing in the CMS becomes N dt 7 8y moyo0s| 70
dN=2¢_Nn dx (54)  where

wheren is the density of the beam bunah,dx is the target D(¢)= \/E _ §e§+§fxln—ue“du
thicknessN is the total number of particles in the bunch, and 2 2)¢ u

the factor of 2 depicts the fact that two particles are lost in —u
each Touschek scattering. Thus the lost rate in the CMS is N £(2+3§—§|n§)fme—du 59
given by dN/dt=2/ o vn®dV, wheredV is the volume el- 2 ¢ U
ement, and =dx/dt. ith
In the laboratory frame, the Touschek loss rate becomed"!

dN_ 2 gz(A_'E’Y:(ﬂ)Z
G ?f vo-TnZdV, (55) Yo, Yol 7l
2 . and

where the 1§° factor takes into account the Lorentz trans-
formation of ov from the CMS to the laboratory frame. ymco,
Since the Touschek scattering takes place only in the hori- Op= B
zontal plane, the vertical and the longitudinal planes can be
integrated easily, and the Touschek loss rate becomes Figure 12 shows the maximum bunch intensity as a func-

tion of |7o/7,| with beam parameters given by =10 h,

os=1 ps and unnormalized rms emittancegs=1 nm,
€,=0.01 nm, with typical betatron amplitude functions of 10
m. For other possible parameters, the tolerable beam inten-
sity can be scaled accordingly. Note that the tolerable num-

whereo, and o are, respectively, the rms bunch height andbe.r of particles in QI storage rings depends sensitively on the
ratio | 7o/ n41|. As |no|—0 in QI storage rings, a propey;

bunch Ieng.th, theS(x, —X,) function describes the fact that carrection is needed, where sextupoles can be used.
the scattering process takes place at a short range betweén

two particles, and the density function of the beam is given
by

dN NG

qt 22 WJ vo_p(X1,X1)p(X2,X3) 8(X1 = X2)

X dxdx;dx,dx;, (56)

V. CONCLUSION

The equilibrium distribution function obtained from the

X2+ / 202] Fokker-Planck equation arising from white noise and phase

(xx’)=—zﬂX expy — ,li’x’—'B—),(x)2
Pz 2oy X 2 X space damping depends solely on the unperturbed Hamil-

(57 tonian, i.e., the distortion of the Hamiltonian contour due to
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phase space damping is balanced by the quantum fluctuation. . eVy _ .
The bunch size is determined by a single parameter o= m[SIH((JH $s) —singg], (A3)
Ew=D?/2A, whereD is the quantum fluctuation amplitude 0

eterD are enhanced; and at the same time, the thermal eyt the peam.

ergy Ey of the beam is also enhanced. The distribution ysing t=»0 as the time variable, where

function in the momentum coordinate is non-Gaussian due tgsz JheVy[70c0spdl2mBZE, is the small amplitude syn-

anharmonicity in the QI Hamiltonian un_Iess the thermal enp otron tune, and using(p) as conjugate phase space co-
ergy is much smaller than the separatrix energy. ordinates. where

Because the effective damping parameter for QI dynami-
cal systems is enhanced, the quantum lifetime can only be 7 Ap Ve,
described by the BHL formula. The conventional expression X=— 5 PEh 2 (A4)
used in accelerator physics may greatly underestimate the 0 Po K
actual quantum lifetime. The effects of the potential well
distortion due to the wake field of the beam bunch are foun
to be identical to that of the normal rf system. Furthermore,
we derive formula of the Touschek lifetime for the QI elec- 1 1 1
tron storage rings. The necessary condition for|thgd cor- Ho=§p2+ EXZ— §X3. (A5)
rection in order to attain high beam intensity in QI storage

rings is calculated. o _ Since the universal Hamiltonian is autonomous, the “en-
When the harmonic rf phase modulation is applied t0 thg,gy» E s a constant of motion. For particles inside the
QI stochastic dynamical system, the cusp in the stability diag ket E e [0,4].

gram shown in Ref(3] is smoothed by the quantum fluctua-
tion. Yet, particles still damp incoherently to bunches around=
attractors(SFP$ with the same thermal energy parameter
Ew. These attractors rotate about the center of the bucket at de(u))?

the modulation frequency. The reduced quantum lifetime can ( du ) =4(p—e))(p—e)(p—es), (AB)
be explained by the fact that the effective potential energy
difference between the SFP and the top of the potential bar: _ _ ; ; ;

rier is reduced by the rf phase modulation. In particular, We(/vh:eriucoég\/i)t,: er Cxés%rldlggror;mg pZO;ITSCOaSr@eJF(‘?L“ZIS?) by
show that the stochastic resonance, a phenomenon of pe[, 2§: 1arcc,:osi1—212E) P8 ’
odically enhanced quantum tunnelifdecay rate at a low 3 X
modulation frequency, can be unambiguously quantitativel;bI
identified as due to the 1:1 parametric resonance.

he synchrotron Hamiltonian for particle motion in QI stor-
ge rings is given by2]

The equation of motion in QI Hamiltonian with energy
is given by the standard Weierstrass equation:

The Weierstrass elliptip function is a single valued dou-
y periodic function of a single complex variable. For par-
ticle inside the  separatrix, the  discriminant
A=648E(1—-6E) is positive, and the Weierstrags func-
ACKNOWLEDGMENTS tion can be expressed in terms of the Jacobian elliptic func-
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X(t)=es+ (e, es)snz( 5 tm. (A7)
APPENDIX A: BRIEF REVIEW .

OF THE QI DYNAMICAL SYSTEM me 2% sing (A8)

e,—e; Sin(£+60°)°

The equation of motion for the rf phase coordingtef a roes e )
particle in a synchrotron is given by The separatrix orbit, which correspondsnie= 1, is given by
$p=hns, (A1)

Xsdl)=1— ————=, Ps)=7772- (A9
whereh is the harmonic numbeg= Ap/p is the fractional cosft+1 (cosft+1)
momentum deviation from the synchronous particle, therpa tune of the QI Hamiltonian is given by
overdot is the derivative with respect to the orbiting angle
0=s/R,, and 5 is the phase slip factor given by [ \/§sir(§+60°)]1’2

Q(E)= (A10)
n=1no+ M+, (A2) VK (m)

where 7, and 7, are the first order and the second orderWe note particularly that the synchrotron tune decreases to
phase slip factors. In many realistic storage rings, the trunzero very sharply near the separatrix. Because of the sharp
cation of the phase slip factor at thg term is a good ap- decrease in synchrotron tune, time dependent perturbation
proximation. Similarly, the equation of motion for the frac- will cause overlapping parametric resonances and chaos near
tional off-momentum deviation is given by the separatrif17—19. The action of a torus is given by
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1 1 /2 3 1 photons up to the critical frequency, the emission of photons
J= Egﬁpdx:g\/;(ez—eg)z(el—%)l’zF(E,— E;3;m>, can be approximated by white noise, i.e., electrons are acted
(AL1) on a Langevin force. To solve the resulting stochastic differ-
ential equation numerically, we examined several numerical
whereF is the hypergeometric functiof6]. The separatrix ~algorithms in this appendix.
action is given byl,= 3/57. Using the generating function
1. Random walk method

Fo(x,d)= fx pdx, (A12) Including the quantum emission of photons, the difference
es equation for the normalized synchrotron phase space coordi-

. I nates is given b
the angle variable is given by=dF,/3J=Qt. The result- g y

ing Hamiltonian is given by Xit1=Xi+2mvs(—AX +Ppi), (B1)
Ho(J)~J— £J2+ . Pi+1=Pit2mvg( =X 1+ XF1q) + (27vg) PDW(H),
0 12 ' (B2)
Due to the synchrotron radiation damping, the equation ofvhere the subscript depicts the revolution number, anid
motion for QI storage rings is given by the synchrotron tune. The Wiener process functig(t) is
defined by
X"+ Ax +x—x2=0, (A13)
t+To
where the effective damping coefficient is given by W(t)= WZJ; &(t)dt’, (B3)
= lz UoJe ) (A14)  WhereT, is the time for one revolution in the ring, and the
vs 2mEqs white-noise function, denoted k§(t), has the properties:
Here\ is the damping decremenit,, is the energy loss per (E())=0, (&(t)&1"))y=8(t—t"). (B4)

revolution, andJg is the damping partition number. In QI

storage rings, the effective damping coefficient is enhancedhus the variance of the Wiener process function becomes

by the corresponding decrease in the synchrotron tune, i.e.,

A~| 5|2, where the value oA can vary from 0 to 0.5. (WHW(1))=1. (BS)
Including the rf phase noise, the Hamiltonian in the nor-

Therefore in the tracking equations of 2), a Wiener
malized phase space coordinates is given by g 9 E62)

processW(t) can be imitated by a random walk af 1 per

2 revolution. In the smooth approximation, E§2) is equiva-
p= 1., 1, . . ; -
H= > + Ex — §x + Wy BXCOSW L, (A15) lent to the differential equations of motion:
dx 27y 2mvg
where w,= v,/ v is the normalized modulation tune, and - T AX+( T )D, (B6)
a and v, are, respectively, the rf phase modulation ampli- 0 0
tude and the modulation tune in the original accelerator co- dp (2w 2| 12
ordinate system. Note that the effective modulation ampli- —:( S)(—x+x2)+ S) D&t).  (BY)
tude given by dt To 0

na Heret is the real time for the particle motion in a storage
1

B= (A16)  ring.
MoVs

is greatly enhanced for QI storage rings, i.e., 2. Stochastic integration methods

B~| 71|/ 7o|* Including the damping force, the equation  For one stochastic variablg the general Langevin equa-
of motion becomes tion has the form

X"+ AX +X—Xx%=— w,Bcoswt. (A17) X(t)=f(X) +g(x)&(t). (B8)

The Langevin force(t) is assumed to be a Gaussian random
variable with zero mean andifunction correlation shown in
Eq. (B4). The integration of Eq(B8) is given by

Electrons in storage rings emit synchrotron radiation,
which is a quantum process. Since the photon emission is x(t+h)=x(t) +f(x)h+g(x) ynW(h), (B9)
discrete and random, the quantum process causes also diffu-h
sion and excitation. The balance between the damping ang €€
excitation provides a natural emittance or beam size for the 1 (teh
electron beam bunch in storage rings. Because of the syn- W(h)= _f dsé(s).
chrotron radiation spectrum depends weakly on the energy of Jvhlt

APPENDIX B: ALGORITHM
FOR STOCHASTIC INTEGRATION
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Two widely used methods for solving stochastic differential JH 1 j c{ gH)
i i — ) === —-—1, C1
equations numerically are presented below. P E TE) Jene. P99 P55 (C1)
a. Euler's scheme
o ) ] where
This integration scheme includes terms up to the otder
for additive noise. To integrate stochastic differential equa- J2,
tions fromt=0 to t=T, we first divide the time interval I'(E)= EA (€2

into N small finite steps of length
is the phase space area in the infinitesimal energy shell

t,=nh, h=T/N, n=12,...N. E<H<E+A with an infinitesimal parametek, and>,(E)
is the phase space area fd<E. The integration over the
The stochastic variable at a later tirg ; thin energy shell of thicknesd can be converted into a
differentiation
Xn+1= X(th+1) =X(n+1)h) (B10)
oH A 9 JH—E)
is calculated according to <p%> “T(E) Efk,;dpd({ P™p )
E
Xn+1= Xt fOGN+g06G) VhWy(h),  (B1D) A

d d
=T(E) 3E dpdq{ —=[P(H-E)]
whereW, (h), W(h), ..., Wy(h) are independent Gaussian- I'(E) JE Jn<e ap
distributed random variables with zero mean and variance 1,
e —(H—E)]- (C3

(Wn)=0, (WqWp)= nm. (B12) HereE is a constant. The first term integrates to zero on the

. . _ . boundaryH =E, while the second term gives
A possible choice of the set of Gaussian random variable

W, is given by < oH > A
E

— ) =——| dpd
Pop | ~T(E) JueP

Y12
Wa(h)= 2, \/%m—o.a, (B13) 1

TT(E) Jeonogs 1 OPAAH B (€4

wherer; is a random number with Qr;<1, andM is an

arbitrary nonzero large integer, e.§41,=10. Using the mean value theorem, we find, in the limit of
A—0,
b. Heun's scheme
Heun's scheme is of second order lin The difference — LJ dpdqH—E)
from the Euler’'s scheme is an additional predictor step. I'(E) Je<H<e+a
1 :__gA f dpd
Xn+1= X 5 [F (%) + 1Y) TN+ g (%0) VWG4 1 () T(E) Jecnegea 0
(B14) = — £A—0, (C5)
with where¢ is a number between 0 and 1. Thus, we finally arrive
at
Yn=XnF F(X)h+ (%) VAW (h).
oH\  Z(E)
In this case we need N2 independent random variables p% "~ 3(E)IE" (CH)
{W,(h)}. The equilibrium distribution function does not de- E
pend on the method of stochastic integration used in ”“meréimilarly we find also
cal simulations. It is, however, worth pointing out that a ’
nonsymplectic integration method can lead to a slightly dif- oH S(E)
ferent Ey, due essentially to the change in the effective q% = m (C7)
parameter. E
and
APPENDIX C: VIRIAL THEOREM
We consider a stochastic Hamiltonia#(p,q), where <ﬁ> :<ﬁ> =0. (C8)
(p,q) are conjugate phase space coordinates. We are inter- ap e aq e

ested in the ensemble average of such a system, which is
denoted by(- - -). In particular, at an “energy’E, we have For the QI Hamiltonian wittH = 3p?+ 2x2— 3x3, we get
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(p)=0,
(p%)=(x*—(x),
(x)=(x?,

where the subscrige has been omitted. We thus obtain

BAI, JEON, LEE, NG, RIABKO, AND ZHAO 55

(3p%)=3(H)—5(x%, (C9

(3x2=3x%)= 3 (H)+ 5(x3). (C10

Since(x%)/12 is small, we obtain an approximate equiparti-
tion theorem for the QI Hamiltonian.
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