
PHYSICAL REVIEW E MARCH 1997VOLUME 55, NUMBER 3
Stochastic beam dynamics in quasi-isochronous storage rings
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We investigate effects of quantum fluctuation, potential well distortion, quantum lifetime, and Touschek
lifetime of the quasi-isochronous~QI! dynamical system. The Fokker-Planck equation is employed to study the
equilibrium bunch distribution. The quantum lifetime in the moderate damping regime is compared with
analytical formulae. The effects of harmonic radio-frequency phase modulation on equilibrium distribution
function, quantum lifetime reduction, and the occurrence of stochastic resonance are studied. The formula for
the Touschek lifetime for the QI dynamical system is derived and studied.@S1063-651X~97!04002-6#

PACS number~s!: 29.20.Dh, 03.20.1i, 05.45.1b
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I. INTRODUCTION

Very short electron bunches, e.g., submillimeter in bun
length, can enhance applications such as time resolved
periments, next generation light sources, coherent sync
tron radiations, and damping rings for the next linear coll
ers @1#. A method to produce short bunches is to reduce
phase slip factor, or the momentum compaction factorac for
electron storage rings. Because of its potential benefit,
physics of particle dynamics in lowac lattices is important
@2–4#.

In our earlier papers@2,3#, we studied single particle dy
namics and the stability of the quasi-isochronous~QI! dy-
namical system, where the particle motion satisfies the
versal Weierstrass equation~see Appendix A!. The particle
motion is described by the Weierstrass` function or the
Jacobian elliptic function@5,6#. We found that the QI dy-
namical system is not sensitive to the radio-frequency~rf!
voltage modulation provided that the modulation amplitu
is less than 20%. On the other hand, we showed that the
dynamical system exhibited chaos at a relatively weak
phase modulation. Due to the synchrotron radiation damp
stable fixed points~SFPs! of parametric resonances becom
attractors. As the amplitude of the applied phase modula
increases, the system exhibits a sequence of period-two
furcations enroute towards global chaos for a modulat
tunevmP(0,2). The sequence of period-two bifurcations h
been attributed to parametric resonances of the Hamilto
system. The critical phase modulation amplitude vs
modulation tune~see Fig. 6 in Ref.@3#! shows a cusp nea
the transition modulation tune between the 2:1 and the
parametric resonances.

Electrons in a storage ring emit synchrotron radiatio
The synchrotron light frequency spectrum is continuous
to a critical energy given by\vc53\cg3/2r, where\ is
Planck’s constant,g is the relativistic Lorentz factor of elec
trons,c is the speed of light, andr is the bending radius. The
synchrotron radiation is a quantum mechanical proce
Since an electron normally emits hundreds to thousand
photons per revolution and the average energy of each e
ted photon is small, the quantum effect of photon emiss
can be simulated by a white noise. Thus electrons, in
presence of quantum fluctuation, are acted on a Lang
551063-651X/97/55~3!/3493~14!/$10.00
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force. Including the harmonic rf noise and the synchrotr
radiation damping, the equation of motion for electrons in
QI storage ring is similar to a class of physical problem
such as the current biased Josephson junction@7#, the sto-
chastic resonance@8#, etc.

This paper studies effects of the quantum fluctuation,
tential well distortion, and Coulomb scattering leading to t
Touschek effect. Section II studies effects of quantum fl
tuation on the equilibrium beam distribution and the qua
tum lifetime in the moderate damping regime. We also stu
the effect of potential well distortion on the beam distrib
tion function. Section III studies effects of the harmonic
phase modulation on beam distribution function, diffusi
rate enhancement, and the stochastic resonance. Sectio
studies the Touschek lifetime limitation. The conclusion
given in Sec. V.

II. QUANTUM FLUCTUATION
AND THE LANGEVIN EQUATION

The synchrotron equation of motion for an electron in
QI storage ring, in the presence of quantum fluctuation a
harmonic rf phase modulation, is given by~see Appendix A!,

d2x

dt2
1A

dx

dt
1
dU

dx
52vmBcos~vmt1x!1Dj~ t !. ~1!

Here t5nsu is the time variable,ns is the small amplitude
synchrotron tune,u is the particle orbiting angle,A is the
phase space damping parameter,vm andB are the rf phase
modulation tune and amplitude, respectively, andU5 1

2x
2

2 1
3x

3 is the QI potential. The conjugate phase space coo
nates (f,2Dp/p0) for the synchrotron motion is trans
formed to the normalized coordinates by

x52
h1

h0

Dp

p0
, p5

nsh1

hh0
2 f.

The quantum fluctuation is represented by a Langevin fo
Dj(t). Since the time for each quantum emission of pho
is much shorter than the relaxation time and successive e
sions of photons are independent, the Langevin force ca
approximated by a white-noise signalj(t) with
3493 © 1997 The American Physical Society
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^j~ t !&50, ^j~ t !j~ t8!&5d~ t2t8!. ~2!

Here ^•••& represents an ensemble average. The Gaus
random variable with a zero mean and ad-function correla-
tion is usually called white noise because its spectral dis
bution is independent of frequency. Methods of integrat
the stochastic differential equation are listed in Appendix

In the absence of damping and harmonic rf phase mo
lation, the unperturbed Hamiltonian is given by

H05
p2

2
1
1

2
x22

1

3
x3, ~3!

where the separatrix energy of the Hamiltonian isEsx51/6.

A. Damping decrement and the damping time

The energy loss per revolution for a particle having
energy offset ofe with respect to the synchronous particle
given by

U~e!'U01eU8. ~4!

HereU0 is the average energy loss per revolution for t
synchronous particle andU8 is the slope of the energy los
with respect to particle energy. Normally, the energy var
tion U8 is small, i.e.,

U85
U0JE
E0

!1, ~5!

whereE0 is the energy of the synchronous particle, andJE is
the damping partition number.

The average energy loss of the synchronous particle
be compensated by the energy gain in rf cavities. Thus
change of the particle energy offset in a complete revolut
is given by

e85e2U8e2W, ~6!

whereW depicts the Wiener process of Eq.~B2! due to
quantum fluctuation in the photon emission. Averaging o
many revolutions, we have

d

du
^e&52

U8

2p
^e&52l^e&. ~7!

Here the damping decrementl, given by

l5
U0JE
2pE0

~8!

is of the order of 102521023 in electron storage rings. In
the normalized coordinate, the enhanced damping param
for QI storage rings becomes

A5
l

ns
. ~9!

The damping parameterA for QI storage rings is of the orde
of 0.1–0.5. In the normalized time coordinate, the damp
time is given bytd51/A.
ian
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B. Stability limit of stochastic dynamical system

Without quantum fluctuation, the stability limit of the Q
dynamical system is determined mainly by the 1:1 and
parametric resonances, which correspond to the dipole
quadrupole modes respectively~see Fig. 6 in@3#!. Including
white noise, we expect that resonance islands will
smeared and the global chaos will be enhanced. Figur
shows the critical modulation parameterBcr as a function of
the modulation frequencyvm for A50.2 ~bottom! and
A50.5 ~top! respectively. Note that the white noise wit
D50.03 ~open circles! andD50.05 ~solid triangles! has ef-
fectively smoothed the cusp nearvm'2 resulting from the
1:1 and 2:1 parametric resonances~solid circles!. Further-
more, the quantum fluctuation can effectively reduce
parametric space where the period-two bifurcation occurs
other words, quantum fluctuation enhances the onset of
bal chaos.

C. Fokker-Planck equation

The Kramer-Smoluchowski-Fokker-Planck~KSFP! or
simply the Fokker-Planck equation for distribution functio
C associated with the Langevin equation of Eq.~1! is given
by @9,10#

FIG. 1. The critical phase modulation amplitudeBcr ~thin solid
lines! obtained from numerical simulations is shown as function
vm for A50.2 ~bottom plot! andA50.5 ~top plot!. Circle dots are
Bcr,1:1 andB2:1 for the 1:1 and 2:1 parametric resonances. Note t
the cusp inBcr obtained from numerical simulations is due to th
transition from the 2:1 to the 1:1 parametric resonances. Includ
the quantum diffusion, the critical phase modulation amplitu
Bcr is reduced, whereBcr for D50.03 ~open circles! and
D50.05 ~solid triangles! are obtained by numerically integratin
the stochastic differential equation.
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]C

]t
5F2p

]

]x
1A

]

]p
p1~x2x2!

]

]p
1
D2

2

]2

]p2

1Bvmsin~vmt1f!
]

]pGC. ~10!

In case of zero harmonic modulation withB50, the normal-
ized steady-state distribution function for the Langevin eq
tion is given by

C~E!5
1

Eth
e2H0 /Eth5

1

Eth
e2E/Eth, ~11!

where theenergy Eis a Hamiltonian value, and the ‘‘ther
mal’’ energy Eth is given by the Einstein relation, or th
fluctuation-dissipation theorem

Eth5
D2

2A
. ~12!

It is worth noting that the isodensity contour of distributio
function follows the equienergy line of the unperturb
Hamiltonian.

The normalization of Eq.~11! is correct only in a small
bunch limit whereEth is small. If a beam bunch containsN
particles, the distribution function becomes

dN

dE
5

N

Eth
e2E/Eth. ~13!

Using Eq.~3! for the unperturbed Hamiltonian, the distribu
tion function is Gaussian in the small bunch approximat
whereEth is small. Since the rms momentum spread fo
small electron bunch is given by

S sp

p0
D 25Cq

g2

JEr
~14!

for an isomagnetic storage ring, wherer is the bending ra-
dius, Cq53.84310213 m, andJE is the damping partition
number, the diffusion parameter is given by

D5A2ACq

JEr U h1

h0
Ug. ~15!

Here the quantum fluctuation coefficientD of the QI dy-
namical system is also enhanced by the smallness ofuh0u. In
fact, if the ratiouh1 /h0u were not properly compensated, th
thermal energy parameterD2/2A would also be enhanced.

To verify the distribution function of Eq.~13!, stochastic
integration methods are applied to solve the Langevin eq
tion. Some algorithms used in particle beam simulations
stochastic differential equation are listed in Appendix B. A
numerical algorithms give similar results with an equilibriu
distribution given by Eq.~11!. For example, Fig. 2 shows
final equilibrium distribution function obtained from numer
cal tracking with the random walk algorithm performed a
cording to Eq.~B2! with parameters 2pns50.05, A50.1,
andD50.056 568 54. We track 10 000 particles, random
distributed initially in a rectangle withupu,1/(2A3) and
21/4,x,1/2, for 13106 turns. The ‘‘energy’’ within the
QI bucket is divided into 200 bins with a bin size o
-

n
a

a-
r
l

-

DE51/1200 each. Statistically, there would be 50 particle
per bin with a statistical fluctuation ofA5057.07 particles.
With our chosen damping parameterA50.1, particles fall
into their steady-state distribution very fast, equilibrium dis
tribution functions can be recorded every 2000 turns. At th
end of a tracking run, 500 distributions are averaged to r
duce the average statistical fluctuation to 0.32 particle
each energy bin. After every turn, we also record number
particles lost and increased the weight of surviving particle
accordingly when they were assigned to various energy bin
In this way, distribution functions of every 2000 turns can b
averaged with equal weight.

The semilogarithmic plot of particle populations vs th
energy bin shown in Fig. 2 indicates that the distribution
exponential, represented by Eq.~13!. The rms energyEth of
the bunch can be obtained from the slope or the intercept
the distribution function at the zero energy bin. From th
slope of the straight line in Fig. 2, we determine
Eth50.0164, which agree very well with the expected valu
of Eth5D2/(2A)50.0160. The value ofEth obtained from
numerical simulations is shown as circles in Fig. 3. The the
retical value of Eq.~12! is shown as the dotted line.

It is worth pointing out that the synchrotron tune does no
affect the steady-state distribution. However, it must be ch
sen to be small enough so that there are a sufficiently lar
number of random excitations during one synchrotron p
riod. In our tracking example with 2pns50.05, there are
about about 125.7 steps of random walk in one synchrotr
period. Further reduction in 2pns does not lead to any dif-
ference in tracking results.

Figure 4 shows the equilibrium distribution function ob
tained from numerical simulations of 5000 particles wit
A50.2 andD50.113 137 08. The solid line marks the sepa
ratrix of the unperturbed Hamiltonian. The dotted line mark
a torus of the unperturbed Hamiltonian with an energ
E52Esx . We note particularly that the phase space disto
tion shown in Fig. 3 of Ref.@2# is effectively compensated
by the stochastic process. There are slightly more partic

FIG. 2. The solid line shows the equilibrium distribution func
tion C(E) obtained from the numerical simulation using random
walk algorithm discussed in Appendix B. Our results verify th
validity of the analytic solution of Eq.~11!. The dashed shows the
initial distribution function used in our numerical simulation. Othe
stochastic integration methods yield similar results.
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3496 55BAI, JEON, LEE, NG, RIABKO, AND ZHAO
outside the separatrix withp.0. This is due to the fact tha
particle loss will follow closely the Hamiltonian trajectory
The equilibrium distribution functions are identical for a
dynamical systems with identical thermal energyEth . How-
ever, we will show that the quantum lifetime depends also
the damping parameterA.

The rms phase space areaA of the beam distribution is
given by

A
p

5Avar~x!var~p!2@covar~x,p!#2, ~16!

where

FIG. 3. The rms energy of the equilibrium distribution functio
Eth obtained from numerical integration of stochastic integral eq
tion is compared with the theoretical value ofD2/2A ~dotted line!
derived from the Fokker-Planck equation. The rms phase sp
area, divided byp, is shown for comparison.

FIG. 4. The equilibrium distribution function in the (x,p) phase
space obtained from the numerical simulation of 5000 particles w
A50.2 andD50.113 137 08. The plot is used to demonstra
that the distribution function follows the contour of theunperturbed
Hamiltonian. The separatrix is shown as the solid line. The dot
line shows the Hamiltonian contour with an energy that is equa
two times of the separatrix energy. The phase space distortion
to the damping is compensated by the quantum diffusion.
n

var~x!5Š~x2^x&!2‹,

var~p!5Š~p2^p&!2‹,

covar~x,p!5^xp&2^x&^p&.

Here^•••& denotes an average over the beam distribution.
a small bunch approximation, the rms phase space area
equal topEth . Rectangle symbols in Fig. 3 show the rm
phase space area obtained from numerical simulations. T
agreement ofA/p with Eth indicates that the distribution is
nearly Gaussian in a small bunch approximation.

D. Quantum lifetime

The steady-state distribution, such as Eq.~13!, arises from
an equilibrium process between synchrotron radiation dam
ing and quantum excitation. This means that at any conto
of energyE, the particle flux leaving the contour as a resu
of quantum excitation is balanced by a flux entering the co
tour due to damping.

In reality, particles inside the bucket can escape the p
tential barrier due to the Langevin force. In a quasistea
state, the form of distribution function in phase space do
not depend on the number of particles, which decreases w
time. Thus the flux that leaves the dynamical aperture
given by

dN~ t !

dt U
E1

52
N~ t !

tq
, ~17!

wheretq is the quantum lifetime, andE1 is the dynamical
aperture. In a small damping limit,E1 is approximately equal
to the separatrix energyEsx of the unperturbed Hamiltonian.
Figure 5 shows the number of surviving particles, obtaine
from a numerical simulation, as a function of the turn num
ber. We find that the particle number decays exponentia
with time. Although the quantum lifetime in storage rings i
usually much longer than the lifetime limitation arising from
processes such as the beam gas scattering, the intrab
scattering, the Touschek lifetime, etc., the general propert

-

ce

h

d
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FIG. 5. The number of surviving particles vs time in number o
turns. The slope of the exponential decay rate is called the quant
lifetime.
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55 3497STOCHASTIC BEAM DYNAMICS IN QUASI- . . .
of the quantum lifetime for the QI dynamical system with
moderate damping, i.e.,A>0.01, is not well known in accel
erator physics. Furthermore, this particular dynamical sys
is also important to other branches of physics@11#.

1. Quantum lifetime in the small damping limit

In the small damping limit, the Hamiltonian contour is n
greatly distorted. When a particle crosses the separatrix,
likely to escape the potential barrier. The quantum lifetim
can be obtained by using the condition of flux conservati

The flux that enters the contourE5E1 at any timet is
given by

dN~ t !

dt U
E1

5
dN~E,t !

dE U
E1

dE

dt U
E1

, ~18!

wheredN/dE is given by Eq.~13!, and the damping rate
dE/dt can be obtained from integrating Eq.~1! with

dE

dt U
E1

52AK S dxdt D
2L '2AE1 . ~19!

Here the equipartition theorem is used to obtain the last
proximate identity~see Appendix C!. Substituting Eqs.~19!
and ~13! into Eq. ~18!, the quantum lifetime of the bunch i
given by

tq5
Eth

AE1
eE1 /Eth, ~20!

or

tq5
Eth

2pnsAE1
eE1 /Eth turns, ~21!

which is inversely proportional to the damping parame
A. This formula is commonly used in estimating the quant
lifetime for nominal non-QI electron storage rings, where t
parameterA is small.

Figure 6 shows the quantum lifetime obtained from n
merical simulations vs damping parameterA for a constant
Eth50.038 72. The solid line in Fig. 6 shows the quantu
lifetime calculated from Eq.~21! with E15Esx . This result
agrees reasonably well with that obtained from numer
simulations only at a small damping limit withA<0.01. The
quantum lifetime is considerably larger than the prediction
Eq. ~21! at a medium damping withA>0.01. This can be
understood by the fact that the effective bucket area fo
moderate damping system is larger than that of a w
damping system.

2. Lifetime for moderate damping systems

Kramers@12# and Chandrasekhar@13# derived a formula
for the particle escaping lifetime in moderate damping
gime given by

tq,KC5F S 11
A2

4v
UFP

2 D 1/21 A

2v
UFP

G 2p

v
SFP

eE1 /Eth, ~22!
m

is
e
.

p-

r

e

-

l

f

a
k

-

wherev
SFP

is the natural frequency of the potential at th

SFP, andv
UFP

is the imaginary frequency at the UFP. Th
dotted line shown in Fig. 6 shows the Kramers’s modera
damping lifetime, which depends slowly onA.

3. BHL formula

Büttiker, Harris, and Landauer~BHL! @11# studied the
extremely underdamped Josephson-junction circuit a
found a lifetime formula for thermal excitation given by

tq,BHL5
@~114Eth /AfE1!

1/211#2

4

2p

v
SFP

eE1 /Eth. ~23!

Here f57.2 is the factor relating the separatrix energy to th
separatrix action for the QI dynamical system. The BHL fo
mula reduces to Eq.~21! in the small damping limit with a
linear oscillator approximation wheref52p. The dashed
line marked BHL in Fig. 6 provides a fair agreement wit
that obtained from numerical simulations.

E. Potential well distortion

Particle motion in a storage ring is also affected by th
wake field generated by the circulating beam. The ener
equation is given by

dd

du
5
eV0cosfs

2pb2E
f2

e2N

2pb2EE2`

t

dt8r~t8!W~t2t8!.

~24!

Here t is the real time coordinate related to the particle
phase coordinatef by

t52
f

hv0
, ~25!

r(t) is the density of the beam bunch with the normalizatio

FIG. 6. The quantum lifetime in number of revolutions obtaine
from numerical simulations is plotted vs the damping parameterA
for a fixedEth50.038 72. The solid line shows the theoretical est
mate of a weak damping limit, the dotted line shows the theoretic
estimate of Kramers’s formula, and the dashed line shows the th
retical value of the BHL formula.
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E r~t!dt51,

N is the number of particles in a bunch, and the wake fu
tionW(t) is related to the impedanceZi(v) by

W~t!5
1

2pE2`

`

ejvtZi~v!dv. ~26!

Using normalized coordinatesx,p ~see Appendix A! and the
time coordinatet5nsu, Eq. ~24! becomes

dx

dt
5p2

e2N

2pb2E

h1

h0ns
E
p

`

dp̃r̃~ p̃!WS h0
2

h1v0ns
@ p̃2p# D ,

~27!

where

r̃~ p̃!5
h0
2

v0nsh1
rS h0

2

v0nsh1
p̃D

is the normalized distribution function with*r̃(y)dy51.
The corresponding effective Hamiltonian for orbiting pa
ticles becomes

Heff5
p2

2
1
x2

2
2
x3

3
2

e2N

2pb2E

h1

h0ns

3E
2`

p

dp̄E
p̄

`

dp̃r̃~ p̃!WS h0
2

h1v0ns
@ p̃2 p̄# D . ~28!

When both white noise and phase space damping are
cluded, the equilibrium distribution function becomes

C~x,p!5Ne2Heff /Eth, ~29!

whereN is the normalization factor determined by

E C~x,p!dxdp51.

Letting r̃(p)5*C(x,p)dx, we obtain the Haissinski equa
tion @14#

r̃~p!5CexpH 2
1

Eth
Fp22 2

e2N

2pb2E

h1

h0ns

3E
2`

p

dp̄E
p̄

`

dp̃r̃~ p̃!WS h0
2

h1v0ns
@ p̃2 p̄# D G J ,

~30!

whereC is a self-consistent normalization constant. A se
consistent solution to the Haissinski equation can provide
equilibrium distribution function to the dynamical system.

For simple wake field model with a resistive broadband
an inductive broadband impedance, the distribution funct
can be derived from analytic formulae@15#. Recent numeri-
cal calculations for the potential well distortion for the Q
storage rings@16# shows that when the bunch area is sma
i.e., smallEth , the effect of potential well distortion is simi
lar to that of the normal rf system.
-

in-

-
n

r
n

,

III. EFFECTS OF THE HARMONIC RF PHASE
MODULATION

Neglecting quantum fluctuation, the attractor solutio
arising from the rf harmonic phase modulation for the 1
parametric resonance can be obtained by the harmonic
earization method with@2,3#

x5X01X1cos~vmt1a!, ~31!

where X0, X1, and a are determined by the solutions o
following equations:

vm
2B25A2vm

2X1
21~vm

2 2A122X1
2!2X1

2 ,

X05
1

2
~12A122X1

2!,

tana5
2Avm

vm
2 2A122X1

2
.

Figure 8 of Ref.@2# shows characteristic properties ofX1,
which corresponds to the SFP of the 1:1 parametric res
nance.

When the effects of quantum fluctuations are included, w
expand the phase space coordinate around the attractor s
tion with

x5X01X1cos~vmt1a!1u. ~32!

The equation of motion for the coordinateu becomes

u91Au81@A122X1
222X1cos~vmt1a!#u2u25Dj~ t !.

~33!

The equivalent local Hamiltonian around the SFP is given b

H1:15
1

2
u821

1

2
@A122X1

222X1cos~vmt1a!#u22
1

3
u3,

~34!

FIG. 7. The top-left plot shows the equilibrium distribution
function at a Poincare´ surface of section with parameters
A50.2, B50.4, vm52.1, andD50.009. The projection of the
equilibrium distribution function onto theu andv axes are shown,
respectively, in the bottom-left and top-right plots. The bottom-rig
plot shows the relative position of the beam bunch in the QI buck
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55 3499STOCHASTIC BEAM DYNAMICS IN QUASI- . . .
where the potential well around the SFP of the 1:1 param
ric resonance is essentially similar to the original Ham
tonian with a spring constant that depends on the amplit
X1 and timet. The time dependent harmonic modulation
the spring constant becomes the source of the Mathieu in
bility @17–19#. This provides the mechanism for the fir
period-two bifurcation leading to global chaos in the QI d
namical system.

A. Equilibrium distribution function

The Fokker-Planck equation associated with the Lange
equation ~33! for distribution function C(u,v,t), where
v5u8, is given by

]C

]t
5FL02 ]

]v
@2X1cos~vmt1a!u#GC. ~35!

HereL0 is the time independent differential operator giv
by

L052
]

]u
v1

]

]v
~Av1A122X1

2u2u2!1
D2

2

]2

]v2
.

The solution of time independent Fokker-Planck equation

]C0

]t
5L0C0 ~36!

is given by

C05
1

Eth
expS 2

1

Eth
Fv22 1

A122X1
2

2
u22

1

3
u3G D . ~37!

Note here that the potential well around the SFP of the
parametric resonance for the QI Hamiltonian is lowered
the attractor solution amplitudeX1. When the attractor am
plitude reachesX151/A2, the potential well disappear
@2,3#, and the QI dynamical system becomes globally u

FIG. 8. The rms widthssv andsu of the projected distribution
function for B50.4 andvm52.1 are plotted as a function o
D/A2A. Note here that the geometric means of the rms width
nearly equal toD/A2A, i.e., the equilibrium distribution function
follows the potential energy contour of the resonance island wi
thermal energy parameter given byEth .
t-
-
e

ta-

in

1
y

-

stable. It is worth pointing out that the equilibrium rms bea
width, even in the presence of harmonic rf phase modulat
is essentially determined by the parameterEth of Eq. ~12!
alone.

To solve time dependent Fokker-Planck equation of E
~35!, we express the solution asC5C0g to obtain

]g

]t
5L0g1D2S 1

C0

]C0

]v D ]g

]v
2@2X1cos~vmt1a!u#

3S 1

C0

]C0

]v
g1

]g

]v D
'F2v

]

]u
1

]

]v
~Av1A122X1

22u2!1
D2

2

]2

]v2

22Av
]

]v
1
2X1uv
Eth

cos~vmt1a!Gg. ~38!

The top left plot of Fig. 7 shows the steady state distribut
function at a Poincare´ surface of section obtained from
numerical simulation with parametersA50.2, B50.4,
vm52.1, andD50.009. If the attractor amplitude is smal
the equilibrium distribution function follows the potential en
ergy contour of the 1:1 parametric resonance island. T
projected distribution functions ontou andv axes are plotted
on the top-right and bottom-left plots, respectively. T
bottom-right plot shows the relative position of the Poinca´
surface of section in the QI bucket.

The rms widthssu andsv of the projected distribution
functions obtained from numerical simulations are shown
a function of D/A2A in Fig. 8. Because the equilibrium
bunch profile may follow the local potential well of the a
tractor, the actual rms widthssu andsv depend on the time
for the Poincare´ surface of section. In all cases, we find th
the rms widths are nearly equal toD/A2A predicted by the
solution @Eq. ~37!# of Fokker-Planck equation.

It should be pointed out that the attractor soluti
x5X01X1cos(vmt1a) is valid only for the attractor solution
associated with the 1:1 parametric resonance. In the cas
period-2 bifurcation, the attractor solution is given by

x5X01X1cos~vmt1a!1X1/2cosS 12vmt1b D , ~39!

and consequently the equilibrium distribution functio
C(u,v,t) is modified accordingly. Particles are distribute
around around the SFPs of the 2:1 parametric resona
Because the potential well of the 2:1 parametric resonanc
shallow, it can easily be destroyed by the quantum diffusi

B. Enhancement of quantum diffusion rate
due to rf harmonic modulation

When a harmonic modulation is applied, particles are d
tributed around SFPs, which coherently rotate about the c
ter of the bucket at the modulation tune. The equivalent lo
potential for particle motion around the SFP is given by@see
Eq. ~34!#
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V~u!5
1

2
@A122X1

222X1cos~vmt1a!#u22
1

3
u3.

~40!

If the modulation tune is high, e.g.,vm@2, and if the
escape time is much longer than the modulation period,
escaping particle experiences many cycles of the rapid o
lating potential, which can be averaged to obtain an effec
potential@20#

Veff~u!5
1

2 S A122X1
21

2X1
2

vm
2 2A122X1

2D u22 1

3
u3.

~41!

The effective potential energy difference between the U
and the SFP is given by

DVsep5
1

6 S A122X1
21

2X1
2

vm
2 2A122X1

2D . ~42!

In the presence of the high frequency modulation, the qu
tum lifetime is given by Eq.~20! or ~23! with the separatrix
energy E1 replaced by the potential energy differen
DVsep. Here, the quantum lifetime reduces to Eq.~20! for
X1→0.

Figure 9 shows the enhancement of the particle de
rate, defined as

r5
tq

tq,m
, ~43!

as a function of the amplitude of the SFPX1 for the modu-
lation tunevm54 and A50.2 with D50.1 ~circles! and
D50.15 ~triangles!, respectively. The attractor amplitud
X1 is obtained by varying the parameterB. Solid lines shown
in Fig. 9 are theoretical results of Eq.~43! based on the BHL
lifetime formula of Eq.~23! with the effective separatrix en
ergyE1 replaced byDVeff of Eq. ~42!.

At a low modulation frequency, the coherent beam m
tion is slow in the QI bucket. Thus particle loss occu

FIG. 9. The triangles and dots show the escape rate enha
ment as a function of the attractor amplitudeX1 for A50.2,
D50.1, andD50.15. The solid lines are obtained from the BH
formula with E1 replaced by the separatrix energyDVsep of Eq.
~42!. The parameterB is varied to obtain appropriateX1 for a given
modulation tunevm54.
e
il-
e

P

n-

y

-

mainly when the potential energy difference between
SFP and the UFP is small, where parametric resonances
greatly enhance the particle loss rate. In this case, using
time averaged separatrix energyDVsep of Eq. ~42! for the
separatrix energyE1 in Eq. ~23! does not provide a good
approximation to the lifetime. A phenomena calledstochas-
tic resonancewill be discussed as follows.

C. Stochastic resonances

When a low frequency harmonic modulation and a wh
noise are simultaneously applied to this dynamical syst
the transition or the decay rate exhibits time dependent p
odic enhancement. The period of transition rate enhancem
is equal to the period of the harmonic modulation. This p
riodic enhancement phenomenon is usually called thesto-
chastic resonance. Occasionally, this type of enhanceme
may occur in a stochastic dynamical system with an al
rithm of white noise that is not sufficiently random. In th
section, we will show that the stochastic resonance ar
from the parametric resonance of the low frequency h
monic modulation.

We have shown that a low frequency modulation with
small amplitude modulation induces mainly the 1:1 param
ric resonance. Particles incoherently damp to SFPs of the
parametric resonance. These SFPs rotate about the cen
the bucket at the modulation frequency. Below the bifurc
tion frequency, there are supposedly two islands associ
with the 1:1 parametric resonance. However, the outer isl
is destroyed by overlapping resonances near the separa

Including a Langevin force with white noise, particles a
distributed around the SFP with an rms beam width given
the thermal energyEth . Since the beam bunch coherent
rotates around the center of the bucket, we expect that
particle escape rate (1/tq) will be greatly enhanced when th
SFP is near the UFP. The effective potential energy diff
ence between the time dependent SFP and UFP is given

DVsep
sr ~u!5

1

6
@A122X1

222X1cos~vmt1a!#. ~44!

The upper plot of Fig. 10 shows the particle escape r
obtained from a numerical simulation as a function of tim
with parameters 2pns50.04,A50.1,B50.5, nm50.2, and
D50.075. Note here that there are major peaks separate
DN51/(nmns) turns. The solid line in the top plot shows th
time dependent decay rate of the BHL formula withE1 re-
placed byDVsepof Eq. ~44!. The lower plot of Fig. 10 shows
the phase

^F&5arctanS ^p&

^x& D
of the centroid of the beam bunch as a function of time. I
clear that when the centroid of the beam bunch is near
UFP, particle loss is greatly enhanced. The occurrence of
periodic beam loss can therefore be associated with the
hancement due to the 1:1 parametric resonance.
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IV. TOUSCHEK LIFETIME

In the beam moving frame~BMF!, the deviation of the
momentumDpc of a particle from that of the synchronou
particle, which has zero momentum, is related to the mom
tum deviation in the laboratory frameDp by

Dpc5
1

g
Dp. ~45!

Thus the momentum deviation in the rest frame of the be
is reduced by the relativistic factorg. Due to the synchrotron
radiation damping and the quantum fluctuation, the rms m
mentum spread of the beam in the BMF satisfies the follo
ing characteristic property

^~xb8 !2&1/2@^~zb8 !2&1/2' K S Dpc
p0

D 2L 1/2, ~46!

where xb , and zb are betatron coordinates,xb85dxb /ds,
zb85dzb /ds are the slopes of the horizontal and the verti
betatron oscillations, andp0 is the momentum of the syn
chronous particle. Since the transverse horizontal momen
spread of the beam is much larger than the momen
spread of the beam in the longitudinal plane, large an
Coulomb scattering can transfer the radial momentum to
longitudinal plane and causes beam loss. This process
first pointed out by Touscheket al. in the Frascatie1e2

storage ring~AdA! @21#. The Touschek effect has been foun
to be important to many low emittance synchrotron radiat
facilities. It may be more important in QI storage ring
where the momentum aperture is determined by the mom
tum compaction factor, i.e.,

FIG. 10. The upper plot shows the particle escape rate (1tq)
plotted as a function of the turn numbers for paramet
2pns50.04, A50.1, B50.5, vm50.2, andD50.075. The solid
line shows the escape rate with the BHL formula by substitut
E1 with the separatrix energy of Eq.~44!. The lower plot shows the
phase of the centroid of the beam bunch. Here we note that
periodic enhancement, called stochastic resonance, of the es
rate is well correlated with the condition that the centroid of t
beam bunch is near the UFP of the QI bucket.
n-

m

-
-
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D p̂

p0
5u

h0

h1
u. ~47!

This section examines the scaling property of the Tousc
effect in the QI dynamical system.

We consider the Coulomb scattering of two particles
their center of mass system~CMS! with momentum
pW 1,init5(px,0,0) andpW 2,init5(2px,0,0). Here the component

of momentum vectors inxŴ ,sŴ, andzŴ base vectors are spec
fied. Since the transverse radial momentum component o
orbiting particle is much larger than the transverse verti
and the longitudinal components, we assume that the in
particle momenta of scattering particles are only in the ho
zontal direction. curvilinear coordinate system. After the c
lision, each particle is scattered by an angleu. The differen-
tial cross section is given by the Mo¨ller formula

ds

dV
5

4r 0
2

~v/c!4 F 4

sin4u
2

3

sin2uG , ~48!

where r 0 is the classical electron radius, andv52px /m is
the relative velocity in the CMS. As shown in Fig. 11, l
x be the angle between the momentumpW 1,scattof a scattered
particle and thes axis,w be the angle between thex axis and
the projection of the momentum of the scattered particle o
the x-z plane. Using the geometry shown in Fig. 11, t
momentum of a scattered particle is given by

pW 1,scatt5~pxsinxcosw,pxcosx,pxsinxsinw!, ~49!

and the momentum of the other scattered particle
2pW 1,scatt. The scattering angleu is related to thex andw by

cosu5sinxcosw, ~50!

and the momentum transfer to the longitudinal plane in
CMS is given by

s

g

he
ape

FIG. 11. The schematic geometry of Touschek scattering, wh
transfers horizontal momentum into the longitudinal momentum

the center of mass frame of collision particles. We usexW ,sW, andzW as
three orthonormal curvilinear coordinate system. Particle loss
sulting from the large angle Coulomb scattering gives rise to
Touschek lifetime, which becomes a limiting factor for high brigh
ness electron storage rings.
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Dpc5pxucosxu. ~51!

Now we assume that the scattered particles will be lost if
scattered longitudinal momentum is larger than the mom
tum aperture, i.e.,

ucosxu>
D p̂

gpx
5

p0uh0u
guh1upx

. ~52!

Thus the total cross section leading to particle loss in
CMS is given by

s
T
5E

ucosxu> D p̂/gpx

ds

5
4r 0

2

~v/c!4
E
0

arccos~D p̂/gpx!
sinxdxE

0

2p

dwF 4

~12sin2xcos2w!2

2
3

~12sin2xcos2w!G
5

8pr 0
2

~v/c!4 F g2px
2

~D p̂!2
211 ln

D p̂

gpx
G . ~53!

The number of particle loss due to the Touschek scat
ing in the CMS becomes

dN52s
T
Nn dx, ~54!

wheren is the density of the beam bunch,n dx is the target
thickness,N is the total number of particles in the bunch, a
the factor of 2 depicts the fact that two particles are lost
each Touschek scattering. Thus the lost rate in the CM
given bydN/dt52*s

T
vn2dV, wheredV is the volume el-

ement, andv5dx/dt.
In the laboratory frame, the Touschek loss rate becom

dN

dt
5

2

g2E vs
T
n2dV, ~55!

where the 1/g2 factor takes into account the Lorentz tran
formation of s

T
v from the CMS to the laboratory frame

Since the Touschek scattering takes place only in the h
zontal plane, the vertical and the longitudinal planes can
integrated easily, and the Touschek loss rate becomes

dN

dt
52

N2

g2

1

4pszss
E vs

T
r~x1 ,x18!r~x2 ,x28!d~x12x2!

3dx1dx18dx2dx28 , ~56!

wheresz andss are, respectively, the rms bunch height a
bunch length, thed(x12x2) function describes the fact tha
the scattering process takes place at a short range bet
two particles, and the density function of the beam is giv
by

r~x,x8!5
bx

2psx
2 expH 2Fx21S bxx82

bx8

2
xD 2G Y 2sx

2J .
~57!
e
n-

e
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The integral can be integrated easily to obtain

1

N

dN

dt
5

1

t
T

5
Nr0

2c

8g2psxszss
U h1

h0
U3D~j!, ~58!

where

D~j!5AjF2
3

2
e2j1

j

2Ej

` lnu

u
e2udu

1
1

2
~213j2j lnj!E

j

`e2u

u
duG ~59!

with

j5S D p̂

gsp
D 25S uh0u

gspuh1u
D 2

and

sp5
gmcsx

bx
.

Figure 12 shows the maximum bunch intensity as a fu
tion of uh0 /h1u with beam parameters given byt

T
510 h,

ss51 ps and unnormalized rms emittancesex51 nm,
ez50.01 nm, with typical betatron amplitude functions of 1
m. For other possible parameters, the tolerable beam in
sity can be scaled accordingly. Note that the tolerable nu
ber of particles in QI storage rings depends sensitively on
ratio uh0 /h1u. As uh0u→0 in QI storage rings, a properh1
correction is needed, where sextupoles can be used.

V. CONCLUSION

The equilibrium distribution function obtained from th
Fokker-Planck equation arising from white noise and ph
space damping depends solely on the unperturbed Ha
tonian, i.e., the distortion of the Hamiltonian contour due

FIG. 12. The expected number of particles per bunch in the
storage ring limited by the Touschek lifetime of 10 h for electr
beam energy of 2 GeV and 7 GeV, respectively. The assumed
rameters aret

T
510 h,ss51 ps, and unnormalized rms emittanc

ex51 nm, ez50.01 nm, with typical betatron amplitude function
of 10 m.
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phase space damping is balanced by the quantum fluctua
The bunch size is determined by a single parame
Eth5D2/2A, whereD is the quantum fluctuation amplitud
andA is the effective damping parameter. Both the norm
ized damping parameterA and the quantum diffusion param
eterD are enhanced; and at the same time, the thermal
ergy Eth of the beam is also enhanced. The distributi
function in the momentum coordinate is non-Gaussian du
anharmonicity in the QI Hamiltonian unless the thermal e
ergy is much smaller than the separatrix energy.

Because the effective damping parameter for QI dyna
cal systems is enhanced, the quantum lifetime can only
described by the BHL formula. The conventional express
used in accelerator physics may greatly underestimate
actual quantum lifetime. The effects of the potential w
distortion due to the wake field of the beam bunch are fou
to be identical to that of the normal rf system. Furthermo
we derive formula of the Touschek lifetime for the QI ele
tron storage rings. The necessary condition for theuh1u cor-
rection in order to attain high beam intensity in QI stora
rings is calculated.

When the harmonic rf phase modulation is applied to
QI stochastic dynamical system, the cusp in the stability d
gram shown in Ref.@3# is smoothed by the quantum fluctu
tion. Yet, particles still damp incoherently to bunches arou
attractors~SFPs! with the same thermal energy parame
Eth . These attractors rotate about the center of the buck
the modulation frequency. The reduced quantum lifetime
be explained by the fact that the effective potential ene
difference between the SFP and the top of the potential
rier is reduced by the rf phase modulation. In particular,
show that the stochastic resonance, a phenomenon of
odically enhanced quantum tunneling~decay! rate at a low
modulation frequency, can be unambiguously quantitativ
identified as due to the 1:1 parametric resonance.
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APPENDIX A: BRIEF REVIEW
OF THE QI DYNAMICAL SYSTEM

The equation of motion for the rf phase coordinatef of a
particle in a synchrotron is given by

ḟ5hhd, ~A1!

whereh is the harmonic number,d5Dp/p is the fractional
momentum deviation from the synchronous particle,
overdot is the derivative with respect to the orbiting an
u5s/R0, andh is the phase slip factor given by

h5h01h1d1•••, ~A2!

whereh0 and h1 are the first order and the second ord
phase slip factors. In many realistic storage rings, the tr
cation of the phase slip factor at theh1 term is a good ap-
proximation. Similarly, the equation of motion for the fra
tional off-momentum deviation is given by
on.
r
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ḋ5
eV0

2pb2E0
@sin~f1fs!2sinfs#, ~A3!

whereV0 and fs are the rf voltage and the synchrono
phase angle, andbc andE0 are the velocity and the energ
of the beam.

Using t5nsu as the time variable, where
ns5AheV0uh0cosfsu/2pb2E0 is the small amplitude syn
chrotron tune, and using (x,p) as conjugate phase space c
ordinates, where

x52
h1

h0

Dp

p0
, p5

nsh1

hh0
2 f, ~A4!

the synchrotron Hamiltonian for particle motion in QI sto
age rings is given by@2#

H05
1

2
p21

1

2
x22

1

3
x3. ~A5!

Since the universal Hamiltonian is autonomous, the ‘‘e
ergy’’ E is a constant of motion. For particles inside th
bucket,EP@0,16].

The equation of motion in QI Hamiltonian with energ
E is given by the standard Weierstrass equation:

S d`~u!

du D 254~`2e1!~`2e2!~`2e3!, ~A6!

where u5(1/A6)t, `5x, and turning points are given b
e15

1
21cos(j), e25

1
21cos(j2120°), e35

1
21cos(j1120°),

with j5 1
3arccos(1212E).

The Weierstrass elliptic̀ function is a single valued dou
bly periodic function of a single complex variable. For pa
ticle inside the separatrix, the discrimina
D5648E(126E) is positive, and the Weierstrass̀ func-
tion can be expressed in terms of the Jacobian elliptic fu
tion @6#

x~ t !5e31~e22e3!sn
2SAe12e3

6
tUmD , ~A7!

m5
e22e3
e12e3

5
sinj

sin~j160°!
. ~A8!

The separatrix orbit, which corresponds tom51, is given by

xsx~ t !512
3

cosht11
, psx~ t !5

3sinht

~cosht11!2
. ~A9!

The tune of the QI Hamiltonian is given by

Q~E!5
p@A3sin~j160°!#1/2

A6K~m!
. ~A10!

We note particularly that the synchrotron tune decrease
zero very sharply near the separatrix. Because of the s
decrease in synchrotron tune, time dependent perturba
will cause overlapping parametric resonances and chaos
the separatrix@17–19#. The action of a torus is given by



o

r
I
ce
i.

or

d
li
co
pl

e.
n

n
n
di
a
th
sy
y

ns
cted
er-
ical

ce
rdi-

e

es

e

-

m

3504 55BAI, JEON, LEE, NG, RIABKO, AND ZHAO
J5
1

2p
rpdx5

1

8
A2

3
~e22e3!

2~e12e3!
1/2FS 32 ,2 1

2
;3;mD ,

~A11!

whereF is the hypergeometric function@6#. The separatrix
action is given byJsx53/5p. Using the generating function

F2~x,J!5E
e3

x

pdx, ~A12!

the angle variable is given byc5]F2 /]J5Qt. The result-
ing Hamiltonian is given by

H0~J!'J2
5

12
J21•••.

Due to the synchrotron radiation damping, the equation
motion for QI storage rings is given by

x91Ax81x2x250, ~A13!

where the effective damping coefficient is given by

A5
l

ns
5

U0JE
2pE0ns

. ~A14!

Herel is the damping decrement,U0 is the energy loss pe
revolution, andJE is the damping partition number. In Q
storage rings, the effective damping coefficient is enhan
by the corresponding decrease in the synchrotron tune,
A;uh0u21/2, where the value ofA can vary from 0 to 0.5.

Including the rf phase noise, the Hamiltonian in the n
malized phase space coordinates is given by

H5
p2

2
1
1

2
x22

1

3
x31vmBxcosvmt, ~A15!

wherevm5nm /ns is the normalized modulation tune, an
a and nm are, respectively, the rf phase modulation amp
tude and the modulation tune in the original accelerator
ordinate system. Note that the effective modulation am
tude given by

B5
h1a

h0ns
~A16!

is greatly enhanced for QI storage rings, i.
B;uh1u/uh0u3/2. Including the damping force, the equatio
of motion becomes

x91Ax81x2x252vmBcosvmt. ~A17!

APPENDIX B: ALGORITHM
FOR STOCHASTIC INTEGRATION

Electrons in storage rings emit synchrotron radiatio
which is a quantum process. Since the photon emissio
discrete and random, the quantum process causes also
sion and excitation. The balance between the damping
excitation provides a natural emittance or beam size for
electron beam bunch in storage rings. Because of the
chrotron radiation spectrum depends weakly on the energ
f

d
e.,

-

-
-
i-

,

,
is
ffu-
nd
e
n-
of

photons up to the critical frequency, the emission of photo
can be approximated by white noise, i.e., electrons are a
on a Langevin force. To solve the resulting stochastic diff
ential equation numerically, we examined several numer
algorithms in this appendix.

1. Random walk method

Including the quantum emission of photons, the differen
equation for the normalized synchrotron phase space coo
nates is given by

xi115xi12pns~2Axi1pi !, ~B1!

pi115pi12pns~2xi111xi11
2 !1~2pns!

1/2DW~ t !,
~B2!

where the subscript depicts the revolution number, andns is
the synchrotron tune. The Wiener process functionW(t) is
defined by

W~ t !5
1

T0
1/2E

t

t1T0
j~ t8!dt8, ~B3!

whereT0 is the time for one revolution in the ring, and th
white-noise function, denoted byj(t), has the properties:

^j~ t !&50, ^j~ t !j~ t8!&5d~ t2t8!. ~B4!

Thus the variance of the Wiener process function becom

^W~ t !W~ t !&51. ~B5!

Therefore in the tracking equations of Eq.~B2!, a Wiener
processW(t) can be imitated by a random walk of61 per
revolution. In the smooth approximation, Eq.~B2! is equiva-
lent to the differential equations of motion:

dx

dt
52S 2pns

T0
DAx1S 2pns

T0
D p, ~B6!

dp

dt
5S 2pns

T0
D ~2x1x2!1S 2pns

T0
D 1/2Dj~ t !. ~B7!

Here t is the real time for the particle motion in a storag
ring.

2. Stochastic integration methods

For one stochastic variablex, the general Langevin equa
tion has the form

ẋ~ t !5 f ~x!1g~x!j~ t !. ~B8!

The Langevin forcej(t) is assumed to be a Gaussian rando
variable with zero mean andd-function correlation shown in
Eq. ~B4!. The integration of Eq.~B8! is given by

x~ t1h!5x~ t !1 f ~x!h1g~x!AhW~h!, ~B9!

where

W~h!5
1

Ah
E
t

t1h

dsj~s!.
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Two widely used methods for solving stochastic different
equations numerically are presented below.

a. Euler’s scheme

This integration scheme includes terms up to the ordeh
for additive noise. To integrate stochastic differential eq
tions from t50 to t5T, we first divide the time intervalT
into N small finite steps of lengthh

tn5nh, h5T/N, n51,2, . . . ,N.

The stochastic variable at a later timetn11

xn115x~ tn11!5x„~n11!h… ~B10!

is calculated according to

xn115xn1 f ~xn!h1g~xn!AhWn~h!, ~B11!

whereW1(h),W2(h), . . . ,WN(h) are independent Gaussia
distributed random variables with zero mean and varianc
i.e.,

^Wn&50, ^WnWm&5dnm . ~B12!

A possible choice of the set of Gaussian random varia
Wn is given by

Wn~h!5(
i51

M A12

M
~r i20.5!, ~B13!

where r i is a random number with 0<r i,1, andM is an
arbitrary nonzero large integer, e.g.,M>10.

b. Heun’s scheme

Heun’s scheme is of second order inh. The difference
from the Euler’s scheme is an additional predictor step.

xn115xn1
1

2
@ f ~xn!1 f ~yn!#h1g~xn!AhW2n21~h!

~B14!

with

yn5xn1 f ~xn!h1g~xn!AhW2n~h!.

In this case we need 2N independent random variable
$Wn(h)%. The equilibrium distribution function does not de
pend on the method of stochastic integration used in num
cal simulations. It is, however, worth pointing out that
nonsymplectic integration method can lead to a slightly d
ferent Eth due essentially to the change in the effectiveA
parameter.

APPENDIX C: VIRIAL THEOREM

We consider a stochastic HamiltonianH(p,q), where
(p,q) are conjugate phase space coordinates. We are i
ested in the ensemble average of such a system, whic
denoted bŷ •••&. In particular, at an ‘‘energy’’E, we have
l

-

1,

le

ri-

-

er-
is

K p ]H

]p L
E

5
1

G~E!
E
E,H,E1D

dpdqS p ]H

]p D , ~C1!

where

G~E!5
]S

]E
D ~C2!

is the phase space area in the infinitesimal energy s
E,H,E1D with an infinitesimal parameterD, andS(E)
is the phase space area forH,E. The integration over the
thin energy shell of thicknessD can be converted into a
differentiation

K p ]H

]p L
E

5
D

G~E!

]

]EEH,E
dpdqS p ]~H2E!

]p D
5

D

G~E!

]

]EEH,E
dpdqH ]

]p
@p~H2E!#

2~H2E!J . ~C3!

HereE is a constant. The first term integrates to zero on
boundaryH5E, while the second term gives

K p ]H

]p L
E

5
D

G~E!
E
H,E

dpdq

2
1

G~E!
E
E,H,E1D

dpdq~H2E!. ~C4!

Using the mean value theorem, we find, in the limit
D→0,

2
1

G~E!
E
E,H,E1D

dpdq~H2E!

52
jD

G~E!
E
E,H,E1D

dpdq

52jD→0, ~C5!

wherej is a number between 0 and 1. Thus, we finally arr
at

K p ]H

]p L
E

5
S~E!

]S~E!/]E
. ~C6!

Similarly, we find also

K q ]H

]q L
E

5
S~E!

]S~E!/]E
, ~C7!

and

K ]H

]p L
E

5 K ]H

]q L
E

50. ~C8!

For the QI Hamiltonian withH5 1
2p

21 1
2x

22 1
3x

3, we get
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^p&50,

^p2&5^x2&2^x3&,

^x&5^x2&,

where the subscriptE has been omitted. We thus obtain
,

.

. J

,

^ 1
2 p

2&5 1
2 ^H&2 1

12 ^x
3&, ~C9!

^ 1
2 x

22 1
3x

3&5 1
2 ^H&1 1

12 ^x
3&. ~C10!

Since^x3&/12 is small, we obtain an approximate equipar
tion theorem for the QI Hamiltonian.
h
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